Abstract

We report flow tube measurements of the effective sulfuric acid diffusion coefficient at ranges of different relative humidities (from ∼4 to 70%), temperatures (278, 288 and 298 K) and initial H2SO4 concentrations (from 1 × 106 to 1 × 108 molecules·cm−3). The measurements were carried out under laminar flow of humidified air containing trace amounts of impurities such as amines (few ppt), thus representing typical conditions met in Earth’s continental boundary layer. The diffusion coefficients were calculated from the sulfuric acid wall loss rate coefficients that were obtained by measuring H2SO4 concentration continuously at seven different positions along the flow tube with a chemical ionization mass spectrometer (CIMS). The wall loss rate coefficients and laminar flow conditions were verified with additional computational fluid dynamics (CFD) model FLUENT simulations. The determined effective sulfuric acid diffusion coefficients decreased with increasing relative humidity, as also seen in previous experiments, and had a rather strong power dependence with respect to temperature, around ∝ T5.6, which is in disagreement with the expected temperature dependence of ∼T1.75 for pure vapours. Further clustering kinetics simulations using quantum chemical data showed that the effective diffusion coefficient is lowered by the increased diffusion volume of H2SO4 molecules via a temperature-dependent attachment of base impurities like amines. Thus, the measurements and simulations suggest that in the atmosphere the attachment of sulfuric acid molecules with base molecules can lead to a lower than expected effective sulfuric acid diffusion coefficient with a higher than expected temperature dependence.

Highlights

  • Sulfate aerosols play a major role in atmospheric chemistry and significantly influence humans’health and Earth’s climate

  • Particulate matter contributes to air pollution and acts as seeds for cloud droplets, affecting cloud properties and radiation budget.Gaseous sulfuric acid H2 SO4, formed via oxidation of SO2 by OH radicals, is the most important driver of new particle formation in the present-day atmosphere, and the concentration of H2 SO4 vapour has a significant impact on atmospheric particle number [1]

  • We have presented measurements of sulfuric acid diffusion coefficient in air derived from the first-order rate coefficients of wall loss of H2 SO4

Read more

Summary

Introduction

Sulfate aerosols play a major role in atmospheric chemistry and significantly influence humans’health and Earth’s climate. The condensation process affects both the growth dynamics of atmospheric particle populations, and the amount of H2 SO4 available for new particle formation. A key parameter in atmospheric mass transport calculations is the gas-phase diffusion coefficient (D), to which the condensation rate of vapour onto particle surface is proportional and dependent on the particle size [2]. Assessments of vapour concentrations [3] and modelling of particle growth and composition [4] are dependent on the values used for the binary diffusion coefficients. The gas phase diffusion can even limit the overall rates of condensation and reactions of trace gases with aerosol particles via influencing the uptake of gas molecules onto the surface. The extensive and detailed discussion on gas phase diffusion limitations is given in Introduction section of Tang et al (2014) [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call