Abstract
Physical, chemical and microbiological stability of the materials is affected by the rotational and translational mobility of free and hydrated water. The role of water in areas such as protein hydration and enzyme activity, food technology, lyophilization and polymers hydration is, therefore, important and can be well understood in terms of dielectric relaxation spectroscopy. Concentration and temperature-dependent hydrophobicity of amino acid is reflected in their tendencies to appear in appropriate positions in proteins. Therefore, to gain more insights on the temperature and concentration dependence of hydrophobicity and structural properties of amino acid, dielectric relaxation of aqueous alanine have been studied in the temperature region 303.15 K to 278.15 K. Time domain spectroscopy have been used in the frequency range of 10 MHz to 30 GHz and in the concentration range 0.18708 ≤ c/M ≤ 0.74831. Two relaxation processes namely the low-frequency relaxation (l) and the high-frequency relaxation (h) has been detected for the aqueous alanine. Dielectric parameters such as static dielectric constant (εj ), relaxation time (τj ) dipole moments (û) and correlation factor (g) have been studied to investigate molecular interaction between alanine and water. The number of water molecules irrotationally bond by the solute molecules (Z ib) was also determined to examine the hydrophobicity of alanine which was found more hydrophobic towards low temperatures and concentrations. Thermodynamic parameters calculated are also supported well for the hydrophobic behaviour of alanine towards low temperatures and concentrations. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.