Abstract

A linear model and three nonlinear models (Logan type III, Lactin and Briere) were applied to Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae) at constant temperatures and validated under diel temperature variation, and field conditions. Complete development from egg to adult, with >80% survivorship, occurred at nine constant temperatures between 15 and 32 °C. Total developmental time decreased from a maximum at 15 °C (68.48 days) to a minimum at 30 °C (18.69 days) and then increased at 32 °C (23.44 days). Optimal survival and the highest developmental rate occurred within the range of 27–30 °C. The adjusted determination coefficients were high for linear and nonlinear models (>0.89). Field validation showed high levels of accuracy in all models (≥93.4%). These valid mathematical models contribute to optimal application, field management, and mass rearing of M. pygmaeus for its applicability to biological control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call