Abstract
The developmental time and survival of the immature stages of Cnaphalocrocis medinalis Guenée were studied at nine constant temperatures (15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and 35°C), 40±10% relative humidity, and a 16:8h light:dark cycle. The total developmental time decreased with increasing temperature between 15 (115.6days) and 32.5°C (20.9days), but increased above 32.5°C. The relationship between the developmental rate and temperature was fitted by a linear model and three nonlinear developmental rate models (Logan 6, Briere 1, and Shi et al.). The nonlinear shape of temperature-dependent development was best described by the Briere 1 model (r2=0.99), and this was supported by statistical information criteria. The total mortality of immature C. medinalis was lowest at 25°C (67.2%) and highest at 35°C (98.1%). The distribution of the developmental times of each stage was described by the two-parameter Weibull distribution equation (r2=0.84–0.96). The predicted date for the cumulative 50% moth emergence was within a variation of one day using the Briere 1 model. The temperature-dependent developmental models for C. medinalis could be applied to determine an optimal management strategy for C. medinalis in paddy fields, and will be helpful in developing a full-cycle phenology model for C. medinalis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.