Abstract

Temperature-dependent development is described by three variables termed thermal characteristics: the developmental zero temperature, below which no development is assumed to occur; the high cutoff temperature, above which development slows; and the developmental index, a measure of physiological time required for a given phase to develop. Physiological time in this study refers to number of degree-days, units that combine temperature and time. The phase of interest here is the entire larval stage. Degree-days track developmental progress more precisely than calendar days and better alert the observer for optimally timing planned interventions. Thermal characteristics are usually derived from simple Type I regressions fitted to the linear portion of plots of rate of development on rearing temperature, where rate is the reciprocal of duration. Existing thermal characteristics for 131 published datasets are revised here using an improved Type II regression proposed by Ikemoto & Takai (2000). These datasets represent species in 11 families and originated between 1927 and 2007 on six continents. Each dataset consists of ≥4 associated rates and temperatures. Revised developmental zero temperatures ranged from 3.9 to 16.0. They varied directly with mean annual temperatures at localities of dataset origin, forming a continuum of low to high values between cool and warm climates. Among other relations, the mathematical product of voltinism × the natural logarithm (ln) of developmental index, which encompasses multivoltinism, varied directly with developmental zeros. In 91% of datasets, number of degree-days for the larval phase calculated using official mean daily air temperatures agreed within ±2 calendar days with those using constant laboratory temperatures. Official temperatures were summarized from records at 18 mid-temperate North American weather stations. Thermal characteristics are found to be adapted to climatic regimes, and local weather-station temperatures are usually suitable for degree-day summations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.