Abstract

Alkylimidazolium chloride ionic liquids (ILs) have many uses in a variety of separation systems, including micro-confined separation systems. To understand the separation mechanism in these systems, the diffusion properties of analytes in ILs under relevant operating conditions, including micro-confinement dimension and temperature, should be known. For example, separation efficiencies for various IL-based microextraction techniques are dependent on the sample volume and temperature. Temperature-dependent (20-100 °C) fluorescence recovery after photobleaching (FRAP) was utilized to determine the diffusion properties of a zwitterionic, hydrophilic dye, ATTO 647, in alkylimidazolium chloride ILs in micro-confined geometries. These micro-confined geometries were generated by sandwiching the IL between glass substrates that were separated by ∼1 to 100 μm. From the measured temperature-dependent FRAP data, we note alkyl chain length-, thickness-, and temperature-dependent diffusion coefficients, with values ranging from 0.021 to 46 μm2/s. Deviations from Brownian diffusion are observed at lower temperatures and increasingly less so at elevated temperatures; the differences are attributed to alterations in intermolecular interactions that reduce temperature-dependent nanoscale structural heterogeneities. The temperature- and thickness-dependent data provide a useful foundation for efficient design of micro-confined IL separation systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call