Abstract

In this paper, based on our previous study regarding the temperature-dependent yield strength for metallic materials and the existing strengthening theories, a physics-based temperature dependent compressive yield strength model for short fiber reinforced magnesium alloy matrix composites was developed. This model was verified by comparison with the experimental data of seven types of magnesium alloy matrix composites. Good agreement between the model predictions and the experimental data was obtained, which fully validates the reasonability of the present model. Moreover, based on the model and the existing material parameters, the influencing factor analysis for short fiber reinforced magnesium alloy matrix composites was systematically conducted. Some novel insights regarding the control mechanism of their temperature dependent compressive yield strengths were provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.