Abstract

Magnetic nanoparticles of nickel ferrite (size: 24±4 nm) have been synthesized by chemical coprecipitation method using stable ferric and nickel salts. Coercivity of nanoparticles has been found to increase with decrease in temperature of the samples. It has been observed that the coercivity follows a simple model of thermal activation of particle’s moment over the anisotropy barrier in the temperature range (10–300 K), in accordance with Kneller’s law for ferromagnetic materials. Saturation magnetization follows the modified Bloch’s law in the temperature range from 300 to 50 K. However, below 50 K, an abrupt increase in magnetization of nanoparticles was observed. This increase in magnetization at lower temperatures was explained with reference to the presence of freezed surface-spins and some paramagnetic impurities at the shell of nanoparticles that are activated at lower temperatures in core-shell nickel ferrite nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.