Abstract

The availability of purely semiconducting single-walled carbon nanotube (s-SWCNT) dispersions has prompted their widespread application in solution-processed thin-film transistors with excellent device performance but has also raised the question of how their precise composition influences charge transport properties in random networks. Here, we compare hole and electron transport in three different polymer-sorted s-SWCNT networks from nearly monochiral (6,5) nanotubes (diameter 0.76 nm) to mixed networks of s-SWCNTs with medium (0.8–1.3 nm) and large (1.2–1.6 nm) diameters. Temperature-dependent field-effect mobilities are extracted from gated four-point probe measurements that exclude any contributions by contact resistance and indicate thermally activated transport. The mobility data can be fitted to the fluctuation-induced tunneling model, although with significant differences between the network compositions. The network with the broadest diameter and thus bandgap range results in the strongest tempe...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call