Abstract

AbstractTemperature dependant I-V characteristics were measured on single-crystalline Si (c-Si) TFTs fabricated inside a location-controlled grain by [.proportional]-Czochralski process using an excimer-laser. At ON-state, temperature the activation energy (Ea) of the drain current drops to a negative value. The field effect mobility ([.proportional]FE) also decreases with temperature with a power of -1.86, which indicates that, the carriers transport are governed by acoustic phonon scattering. At OFF state with a small gate bias, leakage current is dominated by thermal generation, however the Ea was 0.9eV, i.e., near the band gap value of Si. This suggests that the carrier generation centers are not located at the mid-gap states. These distinctive results from a typical poly-Si TFTs are systematically investigated for c-Si TFTs having ECR- PECVD and LPCVD SiO2 gate insulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.