Abstract

The low energy states in metallic armchair carbon nanotubes can decay by the electron–electron Coulomb interactions with the intraband and the interband excitations. The inelastic scattering rate is very sensitive to the changes in the electronic distribution and the state energy (or the wavevector). The temperature dependence is linear for the Fermi-momentum state. Such dependence is hardly affected by the nanotube radius and the Fermi energy. The electron–electron interactions are more efficient in electronic deexcitations compared with the electron–phonon interactions. The calculated results are roughly consistent with the experimental measurements from the time-resolved photoemission spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.