Abstract

By using theoretical analysis and three-point bending experiments, influence of temperature on the bending strength of GaN ceramics is investigated. Based on the critical fracture energy density, a simple and effective temperature-dependent bending strength prediction model is established for piezoelectric semiconductive ceramics. In the model, the bending strength at high temperature depends on the reference temperature, stiffness, polarization and melting point, as well as piezoelectric polarization charges. It is shown that the theoretical predictions are consistent with experimental results. Thus, such a model is instructive to the reliability design of GaN high-temperature devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.