Abstract
Fish oil inclusion into a dry pet food provides a source of long-chain omega-3 fatty acids. Polyunsaturated fatty acids in fish oil have antibacterial activity against various foodborne pathogens, such as Salmonella and pathogenic Escherichia coli. The purpose of this study was to determine the effect of temperature applied to dry pet food kibbles on the antimicrobial activity of menhaden fish oil against Salmonella spp. Sterile menhaden oil was inoculated with ∼8 log of a Salmonella cocktail (∼3% moisture; Salmonella Enteritidis, Salmonella Heidelberg, and Salmonella Typhimurium) and incubated at 25, 37, and 45°C. Microbiological evaluation of the water phase was done after 2 h on tryptic soy agar. Sterile kibbles were coated with fish oil (7.0%, w/w). Canola oil coating was kept as a control. One hour after coating, the kibbles were inoculated with ∼9 log of Salmonella and incubated at the respective temperature. The microbiological evaluation was conducted at 0, 2, 6, 12, and 24 h. The oil phase of the fish oil system was negative for Salmonella after 2 h of incubation and confirmed by enrichment and PCR. From the water phase, 8.1 and 7.3 log were recovered at 25 and 37°C, respectively, and no Salmonella was detected at 45°C. On the kibble, menhaden oil had higher antimicrobial (P ≤ 0.05) activity after 12 h at 25°C and throughout the experiment at 37°C. At 45°C, the fish oil had a superior antimicrobial activity against the Salmonella cocktail after 2 h. When the fish oil alone was compared at different temperatures, a higher antimicrobial activity was observed at 37 and 45°C across all time points. The results indicate antimicrobial activity of menhaden oil increases with temperature. This is an important finding to the pet food industry: a higher fat holding temperature (∼45°C) and the application process may help mitigate Salmonella on extruded kibbles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.