Abstract
The occurrence of non-isoprenoid alkyl glycerol ether lipids in Bacteria and natural environments is increasingly being reported and the specificity and diagenetic stability of these lipids make them powerful biomarkers for biogeochemical and environmental studies. Yet the environmental controls on the biosynthesis of these peculiar membrane lipids remain poorly documented. Here, the lipid content of two mesophilic (Desulfatibacillum aliphaticivorans and Desulfatibacillum alkenivorans) and one thermophilic (Thermodesulfobacterium commune) sulfate-reducing bacteria—whose membranes are mostly composed of ether lipids—was investigated as a function of growth temperature (20–40°C and 54–84°C, respectively). For all strains, the cellular lipid content was lower at sub- or supra-optimal growth temperature, but the relative proportions of dialkyl glycerols, monoalkyl glycerols and fatty acids remained remarkably stable whatever the growth temperature. Rather than changing the proportions of the different lipid classes, the three strains responded to temperature changes by modifying the average structural composition of the alkyl and acyl chains constitutive of their membrane lipids. Major adaptive mechanisms concerned modifications of the level of branching and of the proportions of the different methyl branched lipids. Specifically, an increase in temperature induced mesophilic strains to produce less dimethyl branched dialkyl glycerols and 10-methyl branched lipids relative to linear structures, and the thermophilic strain to decrease the proportion of anteiso relative to iso methyl branched compounds. These modifications were in agreement with a regulation of the membrane fluidity. In one mesophilic and the thermophilic strains, a modification of the growth temperature further induced changes in the relative proportions of sn-2 vs sn-1 monoalkyl glycerols, suggesting an unprecedented mechanism of homeoviscous adaptation in Bacteria. Strong linear correlations observed between different ratios of alkyl glycerols and temperature allow to hypothesize the use of these specific lipids as indicators of temperature changes in the environment.
Highlights
The physiological functions of cellular membranes may be strongly influenced by fluctuations of environmental parameters such as temperature, salinity, pH, or hydrostatic pressure (Russell et al, 1995)
We recently reported that the alkyl glycerol ether lipids (AGEs) composition of mesophilic heterotrophic sulfate-reducing bacteria (SRB, from the genus Desulfatibacillum) strongly depends on the nature and the chain length of the carbon substrate used for growth (VinçonLaugier et al, 2016)
The thermophilic SRB T. commune strain DSM 2178T belonging to the family Thermodesulfobacteriaceae within the class Thermodesulfobacteria was selected for this study due to its capacity to biosynthesize MAGEs and DAGEs with certain structural similarities and clear distinctions compared to AGEs biosynthesized by the mesophilic strains (Langworthy et al, 1983; Sturt et al, 2004)
Summary
The physiological functions of cellular membranes may be strongly influenced by fluctuations of environmental parameters such as temperature, salinity, pH, or hydrostatic pressure (Russell et al, 1995). The hydrolyzed lipids of Desulfatibacillum strains grown on octanoate under optimal conditions mainly consist of 13 FAs, 15 MAGEs, and 21 DAGEs with chain length ranging from C13 to C16 (C13–C18 for FAs) and with a possible methyl branch at C-10 (10Me), iso (i), or anteiso (ai) position.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.