Abstract

Synchrotron-radiation photoemission studies of the formation of Al/GaAs(110) interfaces have been performed as a function of substrate temperature for 60\ensuremath{\le}T\ensuremath{\le}300 K for n- and p-type doped samples. The results show temperature-dependent changes in surface Fermi-level position, surface morphology, and the distribution of released substrate atoms in the overlayer. Detailed examination shows a separation in energy of \ensuremath{\sim}1.0 eV for the Al 2p binding energy for n- and p-type GaAs at low coverage. This equals the difference in band bending for the two substrates and demonstrates that the adatom energy reference is an intrinsic level of the semiconductor, not the Fermi level. Substrate band bending approaches its final value when ${E}_{F}$ becomes the energy reference for the overlayer, and this occurs at the onset of metallic overlayer behavior. Temperature-dependent band bending observed below \ensuremath{\sim}1 monolayer can be understood in terms of the coupling of an adsorbate energy level to the semiconductor via steady-state tunneling and thermionic emission. The high-coverage results at all temperatures are consistent with metallicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.