Abstract

We have investigated the temperature-dependent current-voltage (I-V) and capacitance-voltage (C-V) characteristics of Pd/V Schottky contacts on n-type InP in the temperature range of 200-400 K. The estimated barrier height for the Pd/V/n-type InP SBDs from the I-V and C-V characteristics have varied from 0.48 eV to 0.65 eV (I-V) and 0.85 eV to 0.69 eV (C-V), and the ideality factor (n) from 4.87 to 1.58 in the temperature range 200 to 400 K. It has been observed that the ideality factor decreases while the barrier height increases with increase of temperature. Such behaviour is attributed to barrier inhomogeneities by assuming a Gaussian distribution of barrier heights at the interface. Further, it is found that the series resistance (RS) values of Pd/V/n-InP Schottky diode estimated from Cheung's function are strongly temperature dependent. The zero-bias barrier height bo versus 1/2kT plot has been drawn to obtain the evidence of a Gaussian distribution of the barrier

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call