Abstract

The temperature dependences of the delayed hydride cracking (DHC) rate of Zr-1Nb and Zr-0.8Nb-0.8Sn-0.3Fe alloy claddings are studied in the range 127–300°C in comparison with the data obtained for Zr-2.5Nb and Zircaloy-4 alloys earlier. The samples are in the state of cold deformation and stress relief at 400°C for 24 h and in the state of preliminary hydrogen saturation to a hydrogen concentration of 0.02 wt %. As the strength of a zirconium alloy decreases and its ductility increases, the DHC rate and its high-temperature limit for a linear Arrhenius equation decreases, and the fractographic patterns of the fracture surfaces are different.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.