Abstract

Hydration is a key determinant of the folding, dynamics, and function of proteins. In this study, temperature-dependent Fourier transform infrared (FTIR) spectroscopy combined with singular value decomposition (SVD) and global fitting were used to investigate both the interaction of water with α-helical proteins and the cooperative thermal unfolding of these proteins. This methodology has been applied to an isolated α-helix (Fs peptide) and to globular α-helical proteins including the helical subdomain and full-length villin headpiece (HP36 and HP67). The results suggest a unique IR signature for the interaction of water with the helical amide carbonyl groups of the peptide backbone. The IR spectra indicate a weakening of the net hydrogen bond strength of water to the backbone carbonyls with increasing temperature. This weakening of the backbone solvation occurs as a discrete transition near the maximum of the temperature-dependent hydrophobic effect, not a continuous change with increasing temperature. Possible molecular origins of this effect are discussed with respect to previous molecular dynamics simulations of the temperature-dependent solvation of the helix backbone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.