Abstract

The dynamics of water in aqueous solutions of poly(ethylene oxide) (PEO) were studied by performing molecular dynamics (MD) simulations and quasielastic neutron scattering (QNS). The simulations and experiments were carried out on PEO/water solutions for the composition EO:Ow (ether oxygen:water oxygen) = 1:2.3 in the temperature range from 298 to 410 K. To selectively measure the motion of the water, perdeuterated PEO (d-PEO) was used for the QNS experiments. Intermediate scattering functions derived from the MD simulations were found to be in good agreement with those from QNS experiments. The QNS and MD dynamic structure factors were analyzed using the random jump diffusion (RJD) model, a model frequently applied in analysis of water QNS data, yielding rotational and translational diffusion coefficients for water in the d-PEO/H2O solutions. Analysis of MD results indicates that, although the translational self-diffusion coefficient can be extracted from the RJD fits to the data rather accurately, the r...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call