Abstract
Concrete creep research has focused primarily on uniaxial response. However, biaxially prestressed concrete structures are common, resulting in a multiaxial stress state that can complicate the behavior of a viscoelastic material like concrete. Significant creep strains may be induced in directions transverse to each principle stress due to Poisson’s effect. Past research is unclear regarding the viscoelastic or viscoplastic properties of concrete outside of uniaxial response. It has been reported in separate studies that concrete viscoelastic/viscoplastic Poisson’s ratio (VPR) is an increasing, decreasing and constant function with time, with all reported measurements performed at room temperature. In this paper, the 3D basic creep response of mature cement mortar is examined using a confined compression experiment that allows direct determination of the full stress and infinitesimal strain tensors in a single test, which enables the determination of VPR under a multiaxial stress state. For this purpose, a unique, miniature version of the standardized concrete creep frame is designed that is amenable to placing in climate chambers and temperature ovens. The experimental results indicate that the VPR of sealed, mature cement mortar is nearly constant and equal to the elastic at room temperature, while the VPR gradually increases with time when measured at 60 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.