Abstract

Using terahertz time-domain spectroscopy, the frequency-dependent conductivities of polyaniline emeraldine salt-polyethylene (PAni-PE) pellets were measured at different mass concentrations. THz conductivities were compared to the behavior of DC conductivities measured using impedance spectroscopy. The DC conductivity behavior with mass concentration showed a low percolation threshold. The frequency-dependent behavior in the THz region follows the Mott-Davis behavior which shows stronger correlation at higher PAni concentration. At the same time, the conductivity increases exponentially with increasing PAni concentration over the frequency range studied without an apparent percolation threshold. The mechanisms in the two regions studied suggest that there is more dominant localization in the THz regime in contrast with a more dominant percolative transport in the Hz-MHz region. Temperature-dependent measurements showed a decreasing value of parameter S with increasing temperature consistent with a correlated barrier hopping model. Lastly, the parameter S increases in magnitude with a decreasing amount of PAni in the composites reflective of varying conducting and nonconducting compositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.