Abstract

Threshold stress intensity factor or KIH required to initiate a delayed hydride crack in the axial direction of a Zr-2.5Nb tube was determined at temperatures of 160 oC to 280 oC. KIH remained constant at temperatures from 160 to 250 oC, increased with an increasing temperature in excess of 280 oC using a load decreasing method. To correlate KIH and dislocation twins, tensile tests were conducted on the Zr-2.5Nb tube and textural changes during tensile tests were investigated using an X-ray diffractometer. The extent of the twins increased from 150 to 300 oC and then decreased at temperatures in excess of 300 oC with no twins occurring at 350 oC. Temperature dependencies of KIH and a temperature limit for delayed hydride cracking were discussed with cracking of hydrides by the twins. This study provides supportive evidence to the feasibility of Kim’s DHC model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.