Abstract

AbstractThe zeta potential is a measure of the electrical charge on mineral surfaces and is an important control on subsurface geophysical monitoring, adsorption of polar species in aquifers, and rock wettability. We report the first measurements of zeta potential in intact, water‐saturated, natural carbonate samples at temperatures up to 120°C. The zeta potential is negative and decreases in magnitude with increasing temperature at low ionic strength (0.01 M NaCl, comparable to potable water) but is independent of temperature at high ionic strength (0.5 M NaCl, comparable to seawater). The equilibrium calcium concentration resulting from carbonate dissolution also increases with increasing temperature at low ionic strength but is independent of temperature at high ionic strength. The temperature dependence of the zeta potential is correlated with the temperature dependence of the equilibrium calcium concentration and shows a Nernstian linear relationship. Our findings are applicable to many subsurface carbonate rocks at elevated temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.