Abstract

We measured the temperature dependence of the viscoelastic properties of a liquid polymer confined and sheared within a nanometer-sized gap. In the viscoelastic measurements, we used the fiber wobbling method, a highly sensitive method that we have developed for measuring shear forces. As a liquid sample, we used the fluoropolyether lubricant Fomblin Zdol4000. Our experimental results showed that the temperature dependence of the viscosity was well expressed by the well-known Andrade equation, even in the confined state. The activation enthalpy was calculated by assuming that Eyring's theory of viscosity holds for gaps of a width ranging from 100 nm down to a few nanometers. We observed a significant decrease in the activation enthalpy for gaps smaller than 10 nm. Elasticity, which only appeared for confinement in gaps smaller than 10 nm, roughly decreased with increasing temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.