Abstract

Upper critical field parallel to the conducting layer is studied in anisotropic type-II superconductors on square lattices. We assume enough separation of the adjacent layers, for which the orbital pair-breaking effect is suppressed for exactly aligned parallel magnetic field. In particular, we examine the temperature dependence of the critical field H_c(T) of the superconductivity including the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO or LOFF) state, in which the Cooper pairs have non-zero center-of-mass momentum q. In the system with the cylindrically symmetric Fermi-surface, it is known that H_c(T) of the d-wave FFLO state exhibits a kink at a low temperature due to a change of the direction of q in contrast to observations in organic superconductors. It is shown that the kink disappears when the Fermi-surface is anisotropic to some extent, since the direction of q is locked in an optimum direction independent of the temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.