Abstract
The temperature dependence of the sensitivity of an optical sensor based on long-range surface plasmon resonance (LRSPR) is studied via theoretical modeling. Both the ‘angular interrogation’ and the ‘wavelength interrogation’ modes of operation are studied. In addition, the variation of the full width at half maximum of the LRSPR ‘reflectance dip’ is also studied as a function of temperature, which ultimately determines the temperature dependence of the sensitivity of the sensor when the reflectance is monitored at a fixed incident angle (‘reflectance interrogation’). It is found that while most of the time only the ‘reflectance interrogation’ mode leads to improved sensitivity for the LRSPR sensor compared to a conventional SPR sensor, the temperature stability of the operation of the LRSPR sensor is generally higher than (or at least comparable to) that of the SPR sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.