Abstract

Temperature dependence of the properties of strong-coupling bipolaron in a quantum dot (QD) is studied based on the Lee–Low–Pines–Huybrechts variational method and quantum statistical theory. Results of the numerical calculation show that the vibration frequency as well as the absolute value of the induced potential and the effective potential all increase with increasing coupling strength and temperature, respectively, and they also increase with decreasing relative distance of electrons. The bipolarons are closer and more stable when the temperature is higher and coupling strength is larger. The influence of radius of QD and dielectric constant ratio on the effective potential is little.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.