Abstract

The integrated photoluminescence (PL) intensities of both ordered and disordered epilayers of InGaP grown on GaAs have been measured as a function of temperature. The highest PL efficiency occurs in the most disordered sample. We find that the PL intensities can drop from 2 to almost 4 orders of magnitude between 12 and 280 K. The samples show an Arrhenius behavior characterized by two activation energies. Below 100 K the activation energies lie in the region of 10–20 meV. Above 100 K the activation energy is approximately 50 meV except in the most disordered sample where it increases to 260 meV. We conclude that the low-temperature PL efficiency is most likely controlled by carrier thermalization from spatial fluctuations of the band edges followed by nonradiative recombination. At higher temperatures the PL efficiency is dominated by a nonradiative path whose characteristic activation energy and transition probability depend upon the degree of sublattice ordering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.