Abstract

We calculate the pair correlation function and the order parameter correlation function, which probe, respectively, the intrapair and interpair correlations of a Fermi gas with attractive interparticle interaction, in terms of a diagrammatic approach as a function of coupling throughout the BCS-Bose-Einstein condensation (BEC) crossover and of temperature, both in the superfluid and normal phase across the critical temperature ${T}_{c}$. Several physical quantities are obtained from this calculation, including the pair coherence and healing lengths, the Tan's contact, the crossover temperature ${T}^{*}$ below which interpair correlations begin to build up in the normal phase, and the signature for the disappearance of the underlying Fermi surface which tends to survive in spite of pairing correlations. A connection is also made with recent experimental data on the temperature dependence of the normal coherence length as extracted from the proximity effect measured in high-temperature (cuprate) superconductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.