Abstract

The mitochondrial inner membrane anion channel (IMAC) carries a wide variety of anions and is postulated to be involved in mitochondrial volume homeostasis in conjunction with the K+/H+ antiporter, thus allowing the respiratory chain proton pumps to drive salt efflux. How it is regulated is uncertain; however, it is inhibited by matrix Mg2+ and matrix protons. Previously determined values for the IC50 suggested that the channel would be closed under physiological conditions. In a previous study (Liu, G., Hinch, B., Davatol-Hag, H., Lu, Y., Powers, M., and Beavis, A. D. (1996) J. Biol. Chem. 271, 19717-19723), it was demonstrated that the channel is highly temperature-dependent, and that a large component of this sensitivity resulted from an effect on the pIC50 for protons. We have now investigated the effect of temperature on the inhibition by Mg2+ and have found that it too is temperature-dependent. When the temperature is raised from 20 degrees C to 45 degrees C, the IC50 increases from 22 to 350 microm at pH 7.4 and from 80 to 1.5 mm at pH 8.4, respectively. The Arrhenius plot for the IC50 is linear with a slope = -80 kJ/mol. The IC50 is also strongly pH-dependent, and at 37 degrees C increases from 90 microm at pH 7.4 to 1230 microm at pH 8.4. In view of the extremely rapid fluxes that IMAC is capable of conducting at 37 degrees C, we conclude that inhibition by matrix Mg2+ and protons is necessary to limit its activity under physiological conditions. We conclude that the primary role of Mg2+ is to ensure IMAC is poised to allow regulation by small changes in pH in the physiological range. This control is mediated by a direct effect of H+ on the activity, in addition to an indirect effect mediated by a change in the Mg2+ IC50. The question that remains is not whether IMAC can be active at physiological concentrations of Mg2+ and H+, but what other factors might increase its sensitivity to changes in mitochondrial volume.

Highlights

  • The mitochondrial inner membrane anion channel (IMAC) carries a wide variety of anions and is postulated to be involved in mitochondrial volume homeostasis in conjunction with the K؉/H؉ antiporter, allowing the respiratory chain proton pumps to drive salt efflux

  • In view of the extremely rapid fluxes that IMAC is capable of conducting at 37 °C, we conclude that inhibition by matrix Mg2؉ and protons is necessary to limit its activity under physiological conditions

  • In energized mitochondria, the anion flux through IMAC is expected to be in the outward direction, IMAC is most assayed in de-energized mitochondria by monitoring the rate of passive mitochondrial swelling that occurs after the addition of the potassium ionophore valinomycin to mitochondria suspended in potassium salts of the test anion (1)

Read more

Summary

Introduction

The mitochondrial inner membrane anion channel (IMAC) carries a wide variety of anions and is postulated to be involved in mitochondrial volume homeostasis in conjunction with the K؉/H؉ antiporter, allowing the respiratory chain proton pumps to drive salt efflux. How it is regulated is uncertain; it is inhibited by matrix Mg2؉ and matrix protons. The goal of the present work was to determine the effect of temperature on the inhibition of IMAC by Mg2ϩ and shed light on its physiological significance

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call