Abstract

Highly disordered superconductors have a rich phase diagram. At a moderate magnetic field (B) the samples go through the superconductor-insulator quantum phase transition. In the insulating phase, the resistance increases sharply with B up to a magneto-resistance peak beyond which the resistance drops with B. In this manuscript we follow the temperature (T) evolution of this magneto-resistance peak. We show that as T is reduced, the peak appears at lower B's approaching the critical field of the superconductor-insulator transition. Due to experimental limitations we are unable to determine whether the T=0 limiting position of the peak matches that of the critical field or is at comparable but slightly higher B. We show that, although the peak appears at different B values, its resistance follows an activated T dependence over a large T range with a prefactor that is very similar to the quantum of resistance for cooper-pairs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.