Abstract

Here, we studied Rayleigh-Brillouin light scattering in ten different glass-forming liquids (α-picoline, toluene, o-toluidine, ethanol, salol, glycerol, dibutyl phthalate, o-terphenyl, propylene carbonate, and propylene glycol). For each of these liquids it was found that the Landau-Placzek ratio is in a good agreement with the theory at high temperatures and significantly exceeds the theoretical prediction below a certain temperature. Transition between the two temperature regimes occurs near T(A), where T(A) is crossover point from an Arrhenius-like to a non-Arrhenius behavior for the α-relaxation time dependence on temperature. Increase of the Landau-Placzek ratio relative to the theoretical prediction below T(A) seems to be the universal feature of glass-formers. We suggest that formation of locally favored structures in liquids below T(A) causes observed excess of the Landau-Placzek ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.