Abstract
We measured two-dimensional electronic spectra of light-harvesting complex II (LHCII) at various temperatures (77, 110, 150, 230, and 295 K) under conditions free from singlet-singlet annihilation. We elucidated the temperature-dependent excitation energy transfer dynamics in the Chl a manifold of LHCII. Global analysis revealed that the dynamics can be summarized in distinct time scales from 200 fs up to 15 ps. While the fastest dynamics with a decay time of ∼0.2-0.3 ps are relatively temperature-independent, the lifetimes and relative contributions of slower components showed considerable temperature dependence. The slowest time scale of equilibration with the lowest-energy Chl a increased from ∼5 ps at 295 K to ∼15 ps at 77 K. The final excited state is independent of initial excitation at 230 K and above, whereas static energy disorder is apparent at lower temperatures. A clear temperature dependence of uphill energy transfer processes was also discerned, which is consistent with the detailed-balance condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.