Abstract

Using Landau level spectroscopy, we determine the temperature dependence of the energy band gap in zirconium pentatelluride (ZrTe$_5$). We find that the band gap reaches $E_g=(5 \pm 1)$ meV at low temperatures and increases monotonously when the temperature is raised. This implies that ZrTe$_5$ is a weak topological insulator, with non-inverted ordering of electronic bands in the center of the Brillouin zone. Our magneto-transport experiments performed in parallel show that the resistivity anomaly in ZrTe$_5$ is not connected with the temperature dependence of the band gap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.