Abstract

The authors study the statistical properties of individual defects in n-type metal-oxide-semiconductor field-effect transistors (nMOSFETs) using time dependent defect spectroscopy. This technique is based on the analysis of quantized threshold voltage transients observed on nanoscaled p-type metal-oxide-semiconductor field-effect transistors (pMOSFETs) after negative stress and provides the characteristic emission and capture times of individual traps. To complement to previous studies, the authors apply the methodology to SiON nMOSFETs and positive bias temperature stress. The authors demonstrate that the relaxation transients are due to the collective behavior of individual traps. Furthermore, a strong temperature dependence is observed for both emission and capture times. This is incompatible with elastic tunneling theory which is used in trap characterization techniques such as charge pumping, and also in simulations of erase and program transients of nonvolatile memories. The calculated thermal activation energies for both times are in the order of 0.6 eV and are close to the values obtained for SiON pMOSFETs when negatively stressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call