Abstract

The normal state temperature dependence of a metallic K3C60 phase pure film has been investigated by means of core levels and valence band photoemission, carbon K edge x-ray absorption, and electron energy loss spectroscopies and compared with that of a Mott–Hubbard insulating K4C60 film. The anomalous temperature behavior of K3C60, in the range 30 K–600 K, can be consistently interpreted considering the presence of orientational disorder of the C60 molecules together with the inhomogeneity of the conduction electron distribution at the molecular level. In particular, the changes observed in the photoemission spectra near the Fermi level, are consistent with the behavior predicted for strongly correlated metallic systems in presence of disorder. Also in the case of K4C60 we observe anomalies in the temperature dependence of core levels photoemission data. These anomalies can be explained with the freezing of the molecular motions at low temperature and point to large thermal fluctuations of the alkali atoms around their equilibrium position at high temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.