Abstract

The nitrogen-vacancy (NV) center is a well utilized system for quantum technology, in particular quantum sensing and microscopy. Fully employing the NV center's capabilities for metrology requires a strong understanding of the behavior of the NV center with respect to changing temperature. Here, we probe the NV electronic spin density as the surrounding crystal temperature changes from 10 K to 700 K by examining its $^{13}$C hyperfine interactions. These results are corroborated with \textit{ab initio} calculations and demonstrate that the change in hyperfine interaction is small and dominated by a change in the hybridization of the orbitals constituting the spin density. Thus indicating that the defect and local crystal geometry is returning towards an undistorted structure at higher temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call