Abstract

As the temperature of the panel increases in AC-PDPs, the minimum driving voltage increases. Thus, the driving voltage margin is not sufficient at high temperature. In this paper, we have investigated the mechanism of a misdischarge which is generated due to the decrement of the driving voltage margin at high temperature. The main factor of the high-temperature misdischarge is the increased electron emission ability from the MgO surface. We have confirmed that the wall charge loss in the address period is the largest among the driving periods. We have verified that the wall charge loss at high temperature depends on not only the voltage difference but also the time when the voltage difference is applied. Therefore, the wall charge loss is influenced by the number of sustain discharges in the previous subfield and address load. Finally, we have improved the driving voltage margin at high temperature using a narrow scan time and a high scan voltage in a 50-in panel with HD resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.