Abstract
Thin films of poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN) blend can phase separate upon heating to above its critical temperature. Temperature dependence of the surface composition and morphology in the blend thin film upon thermal treatment was studied using in situ X-ray photoelectron spectroscopy (XPS) and in situ atomic force microscopy (AFM). It was found that in addition to phase separation, the blend component preferentially diffused to and aggregated at the surface of the blend film, leading to the variation of surface composition with temperature. At 185°C, above the critical temperature, the amounts of PMMA and SAN phases were comparable. At lower temperatures PMMA migrated to the surface, leading to a much higher PMMA surface content than in the bulk. The migration and preferential segregation of a blend component in thin films demonstrated here are responsible for the great difference between in situ and ex situ experimental (not real quenching or annealing) results of polymer blend films, and help explain the slow kinetics of surface phase separation at early stage for blend thin films reported in literature. This is significant for the control of surface properties of polymer materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.