Abstract

Surface charge accumulation on an insulating spacer is a critical issue that causes electric field distortion and flashover voltage reduction in DC-GIS. In the operating environment, high-voltage electrode is heated by Joule heat, and the surface charge accumulation is strongly affected by the temperature. This study reports the temperature dependence of surface charge accumulation on DC-GIS insulating spacer and its impact on electric field distortion. Surface charge density distribution is measured on a downsized epoxy spacer under isothermal conditions at room temperature, 40 °C, and 70 °C. Special care is taken to realize a low-moisture and low-dust environment. We obtain the saturation tendency of homo-charge accumulation with less random charges and its temperature dependence. Homo-charge accumulation develops more rapidly and more extensively on the spacer at the higher temperatures. Our results indicate that the surface charge accumulation cannot be explained by a conventional resistive field calculation, and that an explanation based on charge trapping is reasonable. They also show that the homo-charge accumulation significantly contributes to the electric field enhancement after the polarity reversal in our experimental system, especially at high temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call