Abstract
Electron transfers (ETs) in mixed-valent ferrocene/ferrocenium materials are ordinarily facile. In contrast, the presence of ~1:1 mixed-valent ferrocenated thiolates in the organothiolate ligand shells of <2 nm diameter Au225, Au144, and Au25 monolayer-protected clusters (MPCs) exerts a retarding effect on ET between them at and below room temperature. Near room temperature, in dry samples, bimolecular rate constants for ET between organothiolate-ligated MPCs are diminished by the addition of ferrocenated ligands to their ligand shells. At lower temperatures (down to ~77 K), the thermally activated (Arrhenius) ET process dissipates, and the ET rates become temperature-independent. Among the Au225, Au144, and Au25 MPCs, the temperature-independent ET rates fall in the same order as at ambient temperatures: Au225 > Au144 > Au25. The MPC ET activation energy barriers are little changed by the presence of ferrocenated ligands and are primarily determined by the Au nanoparticle core size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.