Abstract
The growth per cycle (GPC) temperature dependence was investigated for SiO2 films prepared by plasma-enhanced atomic layer deposition (PEALD). During preparation of PEALD-SiO2 using bis-diethyl-amino-silane, the GPC was saturated via increasing the precursor dose time and flow rate. The saturated GPC decreased with increasing deposition temperature. GPC saturation curves as a function of precursor dose time were analyzed by a two-step adsorption model, where the amino-silane reversibly adsorbed (physisorption) during the first step, and then irreversibly adsorbed (chemisorption) on the SiO2 surface upon reaction with surface OH absorbents. This model is in good quantitative agreement with the saturation curve. The GPC value was determined by the surface reaction of amino-silane with OH sites, whose surface density was decreased by increasing the deposition temperature. The GPC saturation became slower with increasing deposition temperature, because the desorption rate of the physisorbed precursor increased with increasing temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.