Abstract

The conductivity effective masses of electrons and holes in Si are calculated for carrier temperatures from 1 to 3000 K. The temperature dependence of the electron mass is calculated by use of a phenomenological model of conduction-band nonparabolicity that has been fitted to experimental measurements of the dependence of the electron conductivity effective mass on carrier concentration. The hole mass is investigated by tight-binding calculations of the valence bands, which have been adjusted to match experimental values of the valence-band curvature parameters at the top of the valence band. The calculations are in excellent agreement with femtosecond-laser reflectivity measurements of the change in optical effective mass as hot carriers cool from 1550 to 300 K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.