Abstract

This article addresses the non-Debye-Waller temperature behavior in the intermediate range order for molten MgCl2 and its mixtures with KCl from a theory, Molecular Dynamics, and experimental X-ray scattering perspective and puts these findings in the context of discussions and controversies extending at least four decades. We find that these liquids are defined by two structural motifs. The first motif is associated with chains of positive-negative charge alternation; the second motif, which results in a prepeak in the structure function S(q), is associated with the interaction of Mg2+ and Cl- ions that do not belong to the same charge alternation chain or aggregate. Our complementary X-ray scattering and computational results provide a quantitative explanation for the increase in intensity of the prepeak with temperature as opposed to the behavior of other peaks following normal Debye-Waller behavior. Temperature has opposite effects on the prevalence of each of the two structural motifs, and the enhancement of one pattern appears to be at the detriment of the other. Whereas the intensity in S(q) associated with the charge alternation motif is diminished at higher temperature, the opposite is true for the prepeak associated with intermediate range order due to the second structural motif.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call