Abstract

In the temperature range T=10–300 K, photoreflectance spectroscopy was used to study the temperature dependence of residual stress in epitaxial n-GaAs films (1–5 µm thick, electron concentration of 1016–1017 cm−3) grown on Si(100) substrates. A qualitative analysis showed that the photoreflectance spectra measured in the energy region of the E0 transition in GaAs had two components. They consisted of the electromodulation component caused by the valence subband |3/2; ±1/2〉-conduction band transition and the low-energy excitonic component. The magnitude of stress was determined from the value of the strain-induced energy shift of the fundamental transition from the subband |3/2; ±1/2〉 with respect to the band gap of the unstressed material E0(T)-E0|3/2; ±1/2〉(T). The increase in the energy shift E0-E0|3/2; ±1/2〉 from 22 ± 3 meV at 296 K to 29 ± 3 meV at 10 K, which was found in the experiments, gives evidence of an increase in biaxial stress with decreasing temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call