Abstract
An interferometric method was used for the determination of refractive index of glassy SiO2 in the infrared (IR) wavelength region (1.44<λ<4.77μm) at temperatures ranging from 23.5 to 481°C by IR spectroscopy. The refractive index was found to increase with temperature at a given wavelength. Irregularities of the thermal coefficient of the refractive index (dn/dT) with temperature were observed and explained by the existence of crystal-like microstructures in silica glass. Optical dispersion (dn/dλ) exhibits a maximum at a given temperature. The wavelength at the maximum depends on temperature, showing irregularities with temperature like the thermal coefficient of refractive index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.