Abstract

The temperature dependence of the peak pulse current <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${I}_{\text {peak}}$ </tex-math></inline-formula> and the current rising rate <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">di</i> / <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dt</i> of the insulated gate trigger thyristors (IGTTs) is studied for the first time in this article. Based on the theoretical analysis of the material properties and device physical parameters including the net injection efficiency <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\gamma $ </tex-math></inline-formula> and pulse damping parameter <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${k}$ </tex-math></inline-formula> of IGTTs, the temperature dependence is systematically modeled. The mechanism underlying the effect of injection enhancement on the alleviation of performance deterioration at elevated temperatures is discussed. Experiments of single and repetitive capacitive pulse discharge at <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$- 40\,\,^{\circ }\text{C}$ </tex-math></inline-formula> to 125 °C are carried out on IGTTs with enhanced carrier injection (E-IGTTs) and conventional IGTTs (C-IGTTs). Both the measurement and calculation have shown consistent results that the E-IGTTs with higher <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\gamma $ </tex-math></inline-formula> can exhibit higher <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${I}_{\text {peak}}$ </tex-math></inline-formula> and <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">di</i> / <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dt</i> and lower temperature coefficients at <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$- 40\,\,^{\circ }\text{C}$ </tex-math></inline-formula> to 125 °C compared with C-IGTTs. Lower energy loss on E-IGTTs also alleviates the self-heating effect in repetitive pulse discharge operations. Enhancing the injection efficiencies is an effective way to reduce the temperature dependence of pulsed power performance of IGTTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.