Abstract

Three green light emitting InGaN/GaN multiple quantum well (MQW) structures with different In composition grown by metal-organic chemical vapor deposition are investigated by the X-ray diffraction and the temperature-dependent photoluminescence (PL) measurements. It is found that when the In composition increases in the InGaN/GaN MQWs, the PL spectral bandwidth may anomalously decrease with increasing temperature. The reduction of PL spectral bandwidth may be ascribed to the enhanced non-radiative recombination process which may lower the light emission efficiency of the localized luminescent centers with shallow localization energy in the high-In-content InGaN quantum wells and also cause a reduction of integrated PL intensity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.