Abstract

The temperature dependence of the sticking coefficient of oxygen on a clean Ge(111) surface has been investigated over a wide temperature range from 300 to 1100 °K using three methods. In the interval 300–600 °K a flash technique was used, the desorbed germanium oxide being detected by the time of flight mass-spectrometer. In the range from 500 to 1000 °K the sticking coefficient was measured from the pumping speed of oxygen by the sample surface, and in the range from 800 to 1100 °K the temperature dependence of the etching speed by oxygen was determined. The measured temperature dependence of the sticking coefficient is complex. It increases between 300 and 400 °K, remaining virtually constant from 400 to 500 °K with a new increase in the range from 500 to 1000 °K. A rapid fall in the sticking coefficient was observed at temperatures above 1000 °K. The dependence of the adsorption coverage on exposure has also been obtained for sample temperatures of 300, 350, 400 and 500 and 600 °K. The form of the adsorption curves differs considerably from a theoretical one based on a decrease in the sticking coefficient with coverage given by s = s 0(1 − θ) 2. At 600 °K the sticking coefficient decreases more slowly than predicted by this equation. On the contrary, at 300 °K it begins to decrease rapidly at low coverages less than 0.1 of a monolayer. To explain the results it is assumed that oxygen molecules adsorb on the surface structural defects. At 300 °K such defects may be in the form of steps or other morphological disturbances on the surface, and above 500 °K they are probably equilibrium thermal defects, for example, surface vacancies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call