Abstract

We measured the angular dependence of the 0th, +/-1 st, and +/-2 nd optical diffraction orders from a 50 microm thick transmission grating recorded in a UV-curable holographic polymer-dispersed liquid crystal (HPDLC) made from commercially available constituents. The analysis was performed for two orthogonal polarizations of the probe beams. The emphasis was laid on the temperature dependence of the grating anisotropy. Above the nematic-isotropic phase transition, the grating is optically isotropic. At lower temperatures the grating strength for the optical polarization perpendicular to the grating vector decreases with decreasing temperature, while for orthogonal polarization it increases with decreasing temperature. As a consequence, a regime of diffraction with strongly overmodulated gratings is observed. Our investigations indicate that the anisotropy of the refractive-index modulation scales with the optical anisotropy of the liquid crystal medium forming the phase-separated domains. We further demonstrate that light scattering effects, which are profound only in the nematic phase, must not be neglected and can be taken into account via a Lorentzian line-shape broadening of the probing wave vector directions in the framework of the diffraction theory for anisotropic optical phase gratings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.